# EFFECTS OF SUGAR CANE MOLASSES, RICE BRAN AND LEUCAENA LEUCOCEPHALA LEAVES ON DIGESTIBILITY AND PERFORMANCE OF GROWING RABBITS

## Parra-Almao J.<sup>1</sup>, Nouel-Borges G.<sup>2\*</sup>, Sánchez-Blanco R.<sup>1</sup>

<sup>1</sup>Unidad de Investigación en Producción Animal (UIPA), Decanato de Agronomía, Universidad Centroccidental Lisandro Alvarado, Tarabana, Estado Lara. Venezuela
<sup>2</sup>Gerencia General, Biominbloq CA, Sarare, Estado Lara, Venezuela, \*Corresponding author: genouelb@yahoo.es

## ABSTRACT

Two experiments were conduced to evaluate the rice bran (RB) and sugar cane molasses (SM) as energy feeds, with dry Leucaena leucocephala leaves (LL), in diets for growing rabbits. A total of 24 rabbits ( $77\pm 5$  d age), weighting  $2157\pm 46.1$  g, were distributed in individual digestibility cages. A full random experiment design with 6 treatments and 4 rabbits/treatment were used. Treatments were:  $T_1$ (0% SM and 50% RB); T<sub>2</sub> (12.5% SM and 37.5% RB); T<sub>3</sub> (25% SM and 25% RB); T<sub>4</sub> (37.5% SM and 12.5% RB); T<sub>5</sub> (50% SM and 0% RB) and T<sub>t</sub> (100% commercial balanced food). The first 5 treatments also contained 49% dry LL and 1% mineral premix. Experimental period was 14 days (8 days of adaptation of diets and 6 days of recording data). The dry matter intake (DMI) was higher in T<sub>t</sub> (135 g/d, P<0.05) respect to T<sub>4</sub> (82.4 g/d). Likewise, the apparent digestibility of crude protein was higher  $T_1$  (85.9 %, P<0.001) with respect to  $T_t$  (56.9 %). From the first experiment,  $T_2$ ,  $T_3$  and  $T_t$  were selected to evaluate weight daily gain (WDG), DMI, feed conversion rate (FCR) and feeding cost (USD/kg live weight) in 45 rabbits from 40 to 110 days of age (3 rabbits for cage and 5 cages/treatment). Significant differences (P<0.05) were detected in all variables studied, WDG g ( $T_3$ ) 20.1 lower than T<sub>t</sub> 50.4); DMI g/d (T<sub>2</sub> 223 lower than Tt 294); FCR g/g (T<sub>3</sub> 11.5 higher than Tt 5.9). In conclusion, the results obtained this work may be influenced by the low availability of crude protein that could be caused for heat damage on feed processing in evaluated diets.

Key Words: dry mater intake, *Leucaena leucocephala*, live weight gain, rabbits feeding, rice bran, sugar cane molasses

## INTRODUCTION

One of the major limitations in the development of feed for rabbits is the source of energy used, especially in Venezuela where there are few grain surpluses. In this work it has been proposed to evaluate the nutritional quality of two raw materials available in the local market in the preparation of feed for birds and pigs by seasonal availability and high potassium content (molasses) or because of the low levels of monthly production and easily oxidized oils (Ambreen *et al.*, 2006). So, the aim was to evaluate the effect of different proportions of cane molasses and rice bran in extruded feeds as sources of energy on the production of rabbit in a growth phase, with the use of *Leucaena leucocephala* leaf meal as a source of protein, which has been evaluated on several occasions as part of diets for growing rabbits in Venezuela (Nieves *et al.*, 2008).

## MATERIALS AND METHODS

## Animals and experimental design

In the first experiment 6 treatments (Table 1) in a randomized design were used:  $T_1$  (0% sugar cane molasses (SM) and 50% rice bran (RB)),  $T_2$  (12.5% SM and 37.5% RB),  $T_3$  (25% SM and 25% RB),  $T_4$  (37.5% SM and 12.5% RB),  $T_5$  (50% SM, 0% RB), all of them mixed with 49% of *Leucaena leucocephala* leaf meal without rachis and 1% vitamin-mineral premix, and Tt (100% commercial

balanced feed, CBF). All the diets meet the nutritional requirements for rabbits (De Blas and Mateos, 2010). Twenty-four rabbits ( $77\pm 5$  d of age), weighting  $2157 \pm 46.1$  g were randomly assigned to the six diets (4 rabbits/treatment). Rabbits were housed in individual digestibility steel cages (36 cm wide, 36 cm long and 25 cm high), which had available capacity hoppers for 1.65 kg of feed and automatic drinkers. The experiment lasted 14 days (8 days of diet adaptation and 6 days of recording). Animals were offered 150 g of feed/d every day at 08:00 h. Faecal apparent digestibility of dry matter (ADDM), organic matter (ADOM), neutral detergent fibre (ADNDF) and crude protein (ADCP .- calculated by using the difference between the CP and the protein damaged by heat, HDCP, were determined). HDCP: acid detergent nitrogen content (Van Soest *et al.*, 1991).

Harvesting and processing of *Lecucaena* leaves was performed pruning the branches less than 5 mm of diameter of each of the selected trees, drying them in the shade for 48 to 72 hours and defoliating partially the dried material. Then, they were placed on trays and were dried in oven at 60°C for 24 hours, ground in a sieve of 2 mm, and stored in plastic bags for later use. The five treatments process was done by hand, using an electric mill for meat Bohia (2 HP) which allowed obtaining feed in granular form by following these steps: i) it was weighed each feed based on the proportions of the treatments ii) it was mixed the dry material, so that the mixture remained homogeneous, it was added molasses and premix vitamins and was estimated to add 30% water to the mixture iii) the wetted mixture was passed through the mill trying not to overload mixing to avoid heating the mixture and equipment iv) the pellets were placed in trays and introduced into the oven at 60 °C for 48 hours.

In the second experiment the best treatments from experiment 1 were selected ( $T_2 - 12.5\%$  SM and 37.5% RB -,  $T_3 - 25\%$  SM and 25% RB- and  $T_t$ -100% commercial balanced feed-) to evaluate weight daily gain (WDG), dry matter intake (DMI) and feeding costs in a completely randomized design, with 3 treatments and 5 replicates per treatment (3 rabbits 6 weeks old per experimental unit). A total of 15 experimental units and 45 rabbits of 682  $\pm$  20.9 g/rabbit were housed in cages for fattening galvanized steel with the following dimensions: 50 cm wide, 43 cm long and 46 cm high with galvanized bins and automatic waterers. The rabbits were weighed at the beginning of the trial and then once a week for 8 weeks. WDG was determined per animal per cage (linear regression), feed intake (by difference between feed offered and feed refusals) power cost (opportunity costs of commercial feed and raw materials that were part of the ration used). The variables were analysed statistically by ANOVA using the Statistix software version 1.0 for Windows (1996). Means comparison were analysed by Tukey test.

## **Chemical Analyses**

Procedures of AOAC (1984) were used to determine dry matter (DM) and ash. Crude protein (CP) was analysed by the method proposed by Bilbao *et al.* (1999). Acid detergent fibre (ADF) and neutral detergent fibre (NDF) by the method of Van Soest *et al.* (1991). Gross energy was measured by adiabatic bomb calorimeter.

## **RESULTS AND DISCUSSION**

Diarrhoea was observed in treatments when molasses content in feed increased, spheres of faeces were smaller, less fibrous, and darker, without observing soft faeces. Table 2 shows that treatments had no effect on ADDM and ADOM (P >0.05). With respect to intake, Lebas *et al.* (1997) reported that the leaves of Leucaena can be used in rabbits' diets, with a feed intake around 111-113 g/d and ADDM of 60-63%. Values of feed intake were similar to those obtained in this study with  $T_1$  and  $T_2$ , while ADDM values were lower than those reported by (Nieves *et al.*, 2008). In diets with higher rice bran and lower molasses content ( $T_1$ ,  $T_2$  and  $T_3$ ) ADCP and ADNDF were higher than in the other groups. This could be related to the higher level of potassium rations with molasses that could increase the speed of passage and thus decrease the absorption of nutrients (Scott, 1953 and Briggs and Heller, 1943; cited by Findlay, 1983). Table 3 shows that CP values obtained are suitable for growing rabbits. The OM of  $T_2$  was lower compared to the other two treatments, but the most striking feature is that it can be seen HDCP is very high in  $T_2$  and  $T_3$ . This protein is not available to be digested by the

digestive enzymes of the rabbit, so it has a low availability of amino acids to be absorbed. This may be related to the way of developing an experimental balanced diet, which consisted in dehydrate raw materials at 60 °C for 48 hours and then rehydrate to produce granules in a mill to flesh, according to Nouel *et al.* (2006), who evaluated different methods for feeding of rabbits with the same raw materials. ADF levels for  $T_2$  and  $T_3$  were greater than the optimum level to a balanced feed for growing rabbits (Gidenne *et al.*, 2002). It also occurred for the NDF of the three treatments, but with an advantage for the Tt where hemicellulose accounted for 35% of the total fibre, which is a digestible energy source in the caecum (Van Soest, 1994).

#### **Table 1:** Ingredients and chemical composition of diets

| Ingradiants %                                                        |                | Diets |                |                |                |      |  |
|----------------------------------------------------------------------|----------------|-------|----------------|----------------|----------------|------|--|
| ingreutents, 70                                                      | T <sub>1</sub> | $T_2$ | T <sub>3</sub> | T <sub>4</sub> | T <sub>5</sub> | Tt   |  |
| Sugar Cane molasses                                                  | 0              | 12.5  | 25             | 37.5           | 50             | 0    |  |
| Rice Bran (CP was 13.7%)                                             | 50             | 37.5  | 25             | 12.5           | 0              | 0    |  |
| Leucaena foliage meal (CP was 35.9%, was removed after dried rachis) | 49.0           | 49.0  | 49.0           | 49.0           | 49.0           | 0    |  |
|                                                                      | 0.05           | 0.05  | 0.05           | 0.05           | 0.05           | 0    |  |
| Salt                                                                 | 0.25           | 0.25  | 0.25           | 0.25           | 0.25           | 0    |  |
| Vitamins and minerals <sup>1</sup>                                   | 0.75           | 0.75  | 0.75           | 0.75           | 0.75           | 0    |  |
| Commercial Balanced Feed <sup>2</sup>                                | 0              | 0     | 0              | 0              | 0              | 100  |  |
| Chemical composition, % DM                                           |                |       |                |                |                |      |  |
| Dry Matter (60°C)                                                    | 93.3           | 92.9  | 94.6           | 92.3           | 91.8           | 93.8 |  |
| Neutral Detergent Fibre                                              | 53.4           | 47.2  | 40.5           | 36.1           | 31.9           | 52.1 |  |
| Acid Detergent Fibre                                                 | 23.8           | 21.1  | 12.9           | 19.5           | 18.8           | 16.9 |  |
| Ash                                                                  | 8.5            | 8.8   | 8.8            | 9.9            | 10.3           | 15.1 |  |
| Gross Energy (Mcal/kg DM)                                            | 3.83           | 3.80  | 3.78           | 3.75           | 3.73           | 3.74 |  |
| Digestible Energy (Mcal/kg DM) <sup>3</sup>                          | 2.39           | 2.38  | 2.36           | 2.35           | 2.33           | 2.34 |  |
| Crude Protein (%)                                                    | 24.4           | 22.7  | 21.0           | 19.3           | 17.6           | 13.7 |  |
| Crude Protein Heat damaged (HDCP, %)                                 | 20.2           | 17.6  | 11.3           | 11.3           | 12.3           | 3.0  |  |

<sup>1</sup>Premix provided per kg: Thiamine, 1000 mg; Riboflavin, 300 mg; Pyridoxine, 200 mg; Cyanocobalamin, 700 µg; Niacinamide, 4000 mg; Folic acid, 3,5 mg; Choline, 3000 mg; Fe, 10 mg; <sup>2</sup>Ingredients of CBF (%): corn, corn bran, soy cake, minerals and vitamins, vegetal oil, sorghum, rice, rice bran, alfalfa hay, cotton cake. <sup>3</sup>Estimated according De Blas and Mateos (2010).

**Table 2:** Feed intake (g/d) and fecal apparent digestibility (%)

| <b>Tuble 1</b> Teed mane (g/d) and recur apparent algestionity (70) |                     |                        |                      |                         |                        |                         |         |
|---------------------------------------------------------------------|---------------------|------------------------|----------------------|-------------------------|------------------------|-------------------------|---------|
| Diets                                                               | $T_1$               | $T_2$                  | T <sub>3</sub>       | T <sub>4</sub>          | <b>T</b> 5             | Tt                      | P-value |
| Feed intake (g)                                                     | $100 \pm 3.63^{bc}$ | 118±6.54 <sup>ab</sup> | 92.2±6.93°           | 82.4±3.65 <sup>c</sup>  | 84.4±4.97 <sup>c</sup> | 135.5±3.77 <sup>a</sup> | < 0.001 |
| ADMS                                                                | 50.7±1.47           | 54.6±2.59              | 58.7±1.79            | 53.8±2.61               | 43.0±14.5              | 57.6±1.84               | 0.35    |
| ADCP                                                                | $85.9 \pm 1.17^{a}$ | $74.9 \pm 2.90^{abc}$  | $82.2 \pm 2.85^{ab}$ | $60.4 \pm 4.68^{\circ}$ | $62.6 \pm 10.1^{bc}$   | $56.9 \pm 5.77^{\circ}$ | < 0.001 |
| ADNDF                                                               | $67.6 \pm 1.37^{a}$ | $61.1 \pm 2.33^{a}$    | $58.7 \pm 1.99^{a}$  | $48.7 \pm 2.76^{ab}$    | $30.3 \pm 15.4^{b}$    | $60.3 \pm 1.87^{a}$     | < 0.001 |
| ADMO                                                                | $52.2 \pm 1.42$     | 55.7±2.48              | $58.8 \pm 1.78$      | $52.8 \pm 2.62$         | $40.8 \pm 15.09$       | 61.6±1.66               | 0.14    |
|                                                                     |                     |                        |                      |                         |                        |                         |         |

Apparent digestibility of dry matter (ADMS); Apparent digestibility of Crude Protein (ADCP.-determined by using the difference between the CP and the HDCP in the calculation.-); Apparent digestibility of neutral detergent fibre (ADNDF); Apparent digestibility of organic matter (ADMO). <sup>a,b,c</sup> - means with different superscripts are significantly different (P<0.05).

**Table 3:** Chemical Analysis of diets used in growing phase (%)

| arysis of areas asea in growing phase (70) |            |      |      |      |      |      |      |  |
|--------------------------------------------|------------|------|------|------|------|------|------|--|
|                                            | DM (60 °C) | OM   | CP   | NDF  | ADF  | Ash  | HDCP |  |
| Tt                                         | 93.8       | 85.5 | 17.1 | 51.2 | 15.8 | 8.25 | 3.45 |  |
| $T_2$                                      | 92.9       | 81.5 | 23.8 | 41.3 | 23.2 | 10.9 | 14.4 |  |
| T <sub>3</sub>                             | 94.6       | 85.3 | 25.1 | 44.9 | 20.7 | 9.30 | 16.1 |  |
|                                            |            | _    |      |      | -    |      |      |  |

Dry Matter (DM), Organic Matter (OM), Crude Protein (CP), Acid Detergent Fibre (ADF), Neutral Detergent Fibre (NDF), Crude Protein Heat Damaged (HDCP).

The feed intake (Table 4) of the experimental diets ( $T_2$  and  $T_3$ ) were similar but lower than  $T_t$ , even though the three levels achieved were normal values for rabbits from 35 to 45 days (Lebas *et al.*, 1997). Weight gains were lower for treatments evaluated (approximately 6.9 g/animal/d) compared with  $T_t$ . This result should be directly related to the available protein of the experimental treatments, since only 9.2% was not damaged by heat or bound to fibre, resulting about 6.88 g of total CP rabbit per day, an amount which represents a third of the requirements for growing rabbits (Fraga, 1998), which limits the synthesis of muscle tissue during growth. CP source used, Leucaena meal, has the peculiarity of tannins that present significant content of polyphenols .-mimosine.- (Wheeler *et al.*, 1999), substances that can produce links to sugars, cell wall components and proteins, which decreases

the ability of digestion by digestive tract enzymes. The low WDG of the control can be related to the high fiber content of CBF. Feeds employees have an opportunity cost of 560, 544 and 678 USD/kg DM for  $T_2$ ,  $T_3$  and  $T_t$ , respectively, in its craft production or acquisition in the market. However, the feed cost per kg live weight produced was high for all cases evaluated, although proposed rations was significantly higher than  $T_t$ , which is associated with an inefficient feed conversion achieved using high fiber rations (low energy density) and low amount of protein available. Although, the most limiting factor in conversion of feed into meat was the CP deficit for  $T_2$  and  $T_3$ .

Table 4: Effect of treatments on biological and economic traits

|     |                                        | $T_2$                                 | T <sub>3</sub>      | Tt                     | P-value |
|-----|----------------------------------------|---------------------------------------|---------------------|------------------------|---------|
|     | Initial weight, g                      | 674.8±30.4                            | $690.9 \pm 42.4$    | 682±37.7               | 0.953   |
|     | Final weight, gt                       | $1173 \pm 48.0^{b}$                   | $1160 \pm 48.5^{b}$ | 1857±49.3 <sup>a</sup> | < 0.001 |
|     | Feed Intake, g/d/cage                  | $223 \pm 6.3^{b}$                     | 226±8.0 b           | 294±2.9 <sup>a</sup>   | < 0.001 |
|     | Live weight gain, g/d/cage             | 21.3±0.41 <sup>b</sup>                | $20.1 \pm 0.53^{b}$ | $50.4 \pm 0.76^{a}$    | < 0.001 |
|     | Feed Conversion Ratio, g intake/g gain | 10.5±0.23 <sup>b</sup>                | $11.5 \pm 0.92^{b}$ | $5.80 \pm 0.30^{a}$    | < 0.001 |
|     | Cost USD/kg live weight gain           | $3.66 \pm 0.08^{a}$                   | $3.90 \pm 0.31^{a}$ | $2.46 \pm 0.13^{b}$    | < 0.001 |
| o.c | 11 1100 1 1 1                          | · · · · · · · · · · · · · · · · · · · | (D :0.05)           |                        |         |

<sup>a,b,c</sup> - means with different superscripts are significantly different (P<0.05).

#### CONCLUSIONS

In conclusion, from the five evaluated combinations of molasses and rice , the greatest intake and nutrient digestibility were obtained for  $T_2$  and  $T_3$  (12.5 and 25% molasses and 37.5 and 25% of rice bran, respectively). Diets assessed in growing phase ( $T_2$  and  $T_3$ ) did not improved the commercial balanced feed effect on productive performances nor the feed opportunity cost.

#### ACKNOWLEDGEMENTS

Project 011- AG -2004 UCLA CDCHT to subsidize the whole of this work.

#### REFERENCES

- Ambreen N., Hanif N. Q., Khatoon. S. 2006. Chemical composition of rice polishing from different sources. *Pakistan Vet. J.*, 26(4), 190-192.
- AOAC. 1984. Official Methods of Analysis (14th ed). Association of Official, Agricultural Chemists, Washington DC.
- Bilbao B., Giraldo D., Hevia.P. 1999. Quantitative determination of nitrogen content in plant tissue by colorimetric method. Commun. *Soil. Sci. Plant. Anal.*, 30(13-14), 1997-2005
- De Blas J.C., Mateos G.G. 2010. Feed Formulation. In: De Blas C., Wiseman J. (Eds). The Nutrition of the Rabbit. CABI Publishing. CAB International, Wallingford Oxon, UK, 222-232.
- Findlay P. 1983. Molasses In Beef Nutrition. In: Molasses In Animal Nutrition Copyright C 1983. National Feed Ingredients Association West Des Moines. *Iowa University of Florida, Range Cattle Research and Education Center*. 57p
- Fraga M. 1998. Protein Requirements. In: De Blas C., Wiseman J. (Eds.). The Nutrition of The Rabbit. CAB International, USA, NY, 133-144.
- Gidenne T., Jehl N., Segura M., Michalet-Doreau B. 2002. Microbial activity in the caesium of the rabbit around weaning: impact of a dietary fibre deficiency and of intake level. *Animal Feed Science y Technology*, *99*, *107-118*.
- Lebas F., Coudert P., Rochambeau H., Thébault R.G. 1997. The Rabbit Husbandry. Health and Production. FAO Animal Production and Health Series No. 21. FAO Food and Agriculture Organization of the United Nations. Rome
- Nieves D., Schargel I., Terán O., González C., Silva L., Ly J. 2008. Estudios de procesos digestivos en conejos de engorde alimentados con dietas basadas en follajes tropicales. Digestibilidad fecal. *Rev. Cient. LUZ* (Maracaibo) v.18 n.3 jun.
- Nouel-Borges G., Rossi H., Perdomo A., Espejo-Díaz M., Sánchez-Blanco R., Camacho D. 2006. Effect of different processing methods on cassava or carrot waste to make a food for rabbits. *In: Proceedings of AAAP Animal Production Congress. AAAP Animal Production Congress, Busan, Corea del Sur. 1,1 3*
- Statistix For Windows 1.0 1996 Analytical Software.
- Van Soest P.J., Robertson J.B., Lewis B.A. 1991. Methods for dietary fibre, neutral detergent fibre, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci., 74, 3583-3597.
- Wheeler RA., Norton B., Shelton, HM 1999. Condensed tannins in Leucaena Species and hybrids and implications for nutritive value. In Shelton H., Piggin C., Brewbaker J. (Eds). Strategic Research Findings in Leucaena. ACIAR. Australia, 112-118.